Energy and exergy analysis of drying terebinth in a far infrared‐rotary dryer using response surface methodology

Author:

Kaveh Mohammad1,Abbaspour‐Gilandeh Yousef2,Nowacka Malgorzata3ORCID,Kalantari Davood4,El‐Mesery Hany S.5,Taghinezhad Ebrahim6

Affiliation:

1. Department of Petroleum Engineering, College of Engineering Knowledge University Erbil Iraq

2. Department of Biosystems Engineering, College of Agriculture and Natural Resources University of Mohaghegh Ardabili Ardabil Iran

3. Department of Food Engineering and Process Management, Institute of Food Sciences Warsaw University of Life Sciences – SGGW Warsaw Poland

4. Department of Biosystems Engineering Sari Agricultural Sciences and Natural Resources University (SANRU) Sari Iran

5. School of Energy and Power Engineering Jiangsu University Zhenjiang China

6. Department of Agricultural Technology Engineering, Moghan College of Agriculture and Natural Resources University of Mohaghegh Ardabili Ardabil Iran

Abstract

AbstractWater shows a strong tendency to absorb the energy of wavelengths of 3 and 6 µm, which are in the infrared (IR) range. Therefore, IR dryers are used to dry food and fruits that have a high‐water content. Thus, modeling and optimizing energy and exergy parameters of terebinth drying in an IR–rotary drum (RD) dryer were evaluated using the response surface methodology. Independent factors included IR power and rotary rotation speed, and response factors were specific energy consumption (SEC), energy efficiency (EFF), exergy efficiency (EXEFF), specific exergy loss (EXLOSS), and exergy improvement potential (EIP). According to the obtained results, the range of EFF and EXEFF was between 28.93%–9.11% and 0.88%–6.62%, respectively. As IR power and RD speed increased, SEC (123.75–39.21 MJ/kg), EXLOSS (3.97–2.97 MJ/kg), and EIP (3.62–1.009 MJ/kg) decreased, while EFF and EXEFF increased. The results obtained in this study showed that the optimal IR drying power is 616.39 W, and the optimal rotary rotation speed is 13.46 rpm.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3