Impact of cone‐beam computed tomography artifacts on dose calculation accuracy for lung cancer

Author:

Schröder Lukas1,Bootsma Gregory2,Stankovic Uros1,Ploeger Lennert1,Sonke Jan‐Jakob1

Affiliation:

1. Department of Radiation Oncology The Netherlands Cancer Institute Amsterdam The Netherlands

2. Techna Institute and Princess Margaret Cancer Centre University Health Network Toronto Canada

Abstract

AbstractBackgroundTo implement image‐guided adaptive radiotherapy (IGART), many studies investigated dose calculations on cone‐beam computed tomography (CBCT). A high HU accuracy is crucial for a high dose calculation accuracy and many imaging sites showed satisfactory results. It has been shown that the dose calculation accuracy for lung cancer lags behind.PurposeTo examine why the dose calculation accuracy for lung is insufficient, the relative effects of the field‐of‐view (FOV), breathing motion, and scatter on dose calculation accuracy were studied.MethodsA framework was built to simulate CBCT scans for lung cancer patients by forward projecting repeat CT (rCT) scans for two scan geometries: small (SFOV) and medium FOV (MFOV). Breathing motion was modeled by applying a 4D deformation vector field to the mid‐position rCT. Scatter was modeled by Monte‐Carlo simulations with/without an anti‐scatter grid (ASG). Simulated projections were reconstructed using filtered back‐projection with/without scatter correction. In case of the SFOV, the CBCT images were patched with the planning CT scan in axial direction. The treatment plan was recalculated on the rCT and simulated CBCT. The mean Hounsfield unit (HU) difference (ΔHUmean), the structural similarity index measure (SSIM), and γ metrics were calculated for the CBCT datasets of various imaging settings.ResultsThe differences in HU, SSIM and dose calculation accuracy for CBCTs with and without breathing motion were negligible (mean ΔHUmean = 6.4 vs. 13.7, mean SSIM = 0.941 vs. 0.957, mean γ (ref = MFOV) = 0.75). The SFOV resulted in a lower HU (mean ΔHUmean = −9.2 vs. 13.7) and SSIM (mean SSIM = 0.912 vs. 0.957), and therefore in dose differences compared to the MFOV (mean γ = 1.22). Scatter led to considerable discrepancies in all metrics. Adding only the ASG improved the results more than only applying a scatter correction algorithm. Combining ASG and scatter correction algorithm resulted in an even higher dose calculation accuracy.ConclusionsScatter and FOV are the main contributors to dose inaccuracies and motion has only a minor effect on dose calculation accuracy. Therefore, utilizing an appropriate scatter correction and FOV is important to achieve sufficient dose calculation accuracy to facilitate IGART for lung.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3