Engineering and physicochemical characterization of a novel, stable, symmetric bispecific antibody with dual target‐binding using a common light chain

Author:

Saito Seiji1ORCID,Nakayama Makoto2,Yamazaki Kaori1,Miyamoto Yuya1,Hiraishi Keiko1,Tomioka Daisuke1,Takagi‐Maeda Sayaka3,Usami Katsuaki3,Takahashi Nobuaki4,Nara Shinji1,Imai Eiichiro1

Affiliation:

1. Molecular Analysis Center, R&D Division Kyowa Kirin Co., Ltd. Tokyo Japan

2. Research Core Function Laboratories, R&D Division Kyowa Kirin Co., Ltd. Tokyo Japan

3. Modality Research Laboratories, R&D Division Kyowa Kirin Co., Ltd. Tokyo Japan

4. R&D Division Kyowa Kirin Co., Ltd. Tokyo Japan

Abstract

AbstractBispecific antibodies (BsAbs) have emerged as a major class of antibody therapeutics owing to their substantial potential in disease treatment. While several BsAbs have been successfully approved in recent years, ongoing development efforts continue to focus on optimizing various BsAbs tailored to particular antigens and action mechanisms, aiming to achieve favorable physicochemical properties. BsAbs generally encounter challenges due to their unfavorable physicochemical characteristics and poor manufacturing efficiencies, highlighting the need for optimization to achieve reliable productivity and developability. Herein, we describe the development of a novel symmetric BsAb, REGULGENT™ (N‐term/C‐term), comprising two Fab domains, using a common light chain. The heavy chain fragment encoded two antigen‐binding determinants in one chain. The design and production of REGULGENT™ (N‐term/C‐term) are simple owing to the use of the same light chain, which does not induce heavy and light chain mispairing, frequently observed with the asymmetric BsAb format. REGULGENT™ (N‐term/C‐term) exhibited high expression and low aggregation characteristics during cell culture and stress treatment under low pH conditions. Differential scanning calorimetric data indicated that REGULGENT™ molecules had high conformational stability, similar to that of stabilized monoclonal antibodies. Surface plasmon resonance data showed that REGULGENT™ (N‐term/C‐term) could bind to two antigens simultaneously and exhibited a high affinity for two antigens. In summary, the symmetric BsAb format of REGULGENT™ confers its desirable IgG‐like physicochemical properties, thus making it an excellent candidate for commercial development. The findings demonstrate a novel BsAb with substantial development potential for clinical applications.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3