Parameter adaptive based neural network sliding mode control for electro‐hydraulic system with application to rock drilling jumbo

Author:

Guo Xinping1ORCID,Wang Hengsheng12ORCID,Liu Hua1

Affiliation:

1. College of Mechanical and Electrical Engineering Central South University Changsha China

2. State Key Laboratory for High Performance Complex Manufacturing Central South University Changsha China

Abstract

SummaryRock drilling jumbo is an important large construction machine used for tunneling construction, and its automation has an urgent demand in engineering. However, the electro‐hydraulic system of the rock drilling jumbo has strong parameters uncertainties and some dynamics that are hard to model accurately, which causes certain challenges for designing model‐based high‐performance control algorithms. To solve these challenges, a parameter adaptive based neural network sliding mode control algorithm is proposed to enhance control performance of the electro‐hydraulic system. The parameter adaptive law is developed to estimate unknown parameters of the system, the neural network is applied for compensating unmodeled dynamics, and then the final control law is designed by sliding mode control method, and the stability demonstration of the closed‐loop system is given. In the simulations, the effectiveness of the designed parameter adaptive law is verified. Extensive comparison experiments are performed on a real rock drilling jumbo driven by proportional valves, the experimental results demonstrate that the developed control algorithm obviously improves the control precision of hydraulic cylinder of the rock drilling jumbo compared with the traditional sliding mode and PID control algorithm, thus the designed control algorithm can be expanded and applied for general hydraulic servo control mechanism.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3