Evaluating scaling of capillary photo‐biofilm reactors for high cell density cultivation of mixed trophies artificial microbial consortia

Author:

Kenkel Amelie1,Karande Rohan2,Bühler Katja3

Affiliation:

1. Department of Solar Materials Helmholtz Center for Environmental Research, UFZ Leipzig Germany

2. Research and Transfer Center for bioactive Matter b‐ACTmatter, Institute of Biochemistry Leipzig University Leipzig Germany

3. Department of Environmental Microbiology Helmholtz Center for Environmental Research, UFZ Leipzig Germany

Abstract

AbstractCapillary biofilm reactors (CBRs) are attractive for growing photoautotrophic bacteria as they allow high cell‐density cultivation. Here, we evaluated the CBR system's suitability to grow an artificial consortium composed of Synechocystis sp. PCC 6803 and Pseudomonas sp. VBL120. The impact of reactor material, flow rate, pH, O2, and medium composition on biomass development and long‐term biofilm stability at different reactor scales was studied. Silicone was superior over other materials like glass or PVC due to its excellent O2 permeability. High flow rates of 520 μL min−1 prevented biofilm sloughing in 1 m capillary reactors, leading to a 54% higher biomass dry weight combined with the lowest O2 concentration inside the reactor compared to standard operating conditions. Further increase in reactor length to 5 m revealed a limitation in trace elements. Increasing trace elements by a factor of five allowed for complete surface coverage with a biomass dry weight of 36.8 g m−2 and, thus, a successful CBR scale‐up by a factor of 25.Practical application: Cyanobacteria use light energy to upgrade CO2, thereby holding the potential for carbon‐neutral production processes. One of the persisting challenges is low cell density due to light limitations and O2 accumulation often occurring in established flat panel or tubular photobioreactors. Compared to planktonic cultures, much higher cell densities (factor 10 to 100) can be obtained in cyanobacterial biofilms. The capillary biofilm reactor (CBR) offers good growth conditions for cyanobacterial biofilms, but its applicability has been shown only on the laboratory scale. Here, a first scale‐up study based on sizing up was performed, testing the feasibility of this system for large‐scale applications. We demonstrate that by optimizing nutrient supply and flow conditions, the system could be enlarged by factor 25 by enhancing the length of the reactor. This reactor concept, combined with cyanobacterial biofilms and numbering up, holds the potential to be applied as a flexible, carbon‐neutral production platform for value‐added compounds.

Publisher

Wiley

Subject

Bioengineering,Environmental Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3