Multi‐objective Bayesian algorithm automatically discovers low‐cost high‐growth serum‐free media for cellular agriculture application

Author:

Cosenza Zachary1,Block David E.12,Baar Keith3,Chen Xingyu1

Affiliation:

1. Department of Chemical Engineering University of California Davis USA

2. Department of Viticulture and Enology University of California Davis USA

3. Department of Neurobiology, Physiology, and Behavior and Physiology and Membrane Biology University of California Davis USA

Abstract

AbstractIn this work, we applied a multi‐information source modeling technique to solve a multi‐objective Bayesian optimization problem involving the simultaneous minimization of cost and maximization of growth for serum‐free C2C12 cells using a hyper‐volume improvement acquisition function. In sequential batches of custom media experiments designed using our Bayesian criteria, collected using multiple assays targeting different cellular growth dynamics, the algorithm learned to identify the trade‐off relationship between long‐term growth and cost. We were able to identify several media with more growth of C2C12 cells than the control, as well as a medium with 23% more growth at only 62.5% of the cost of the control. These algorithmically generated media also maintained growth far past the study period, indicating the modeling approach approximates the cell growth well from an extremely limited data set.

Publisher

Wiley

Subject

Bioengineering,Environmental Engineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3