Impact of interstitial flow on cartilage matrix synthesis and NF‐kB transcription factor mRNA expression in a novel perfusion bioreactor

Author:

Abusharkh Haneen A.1,Robertson Terreill1,Mendenhall Juana2,Gozen Bulent A.3,Tingstad Edwin M.4,Abu‐Lail Nehal I.5,Thiessen David B.1,Van Wie Bernard J.1ORCID

Affiliation:

1. Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman Washington USA

2. Department of Chemistry Morehouse College Atlanta Georgia USA

3. School of Mechanical and Materials Engineering Washington State University Pullman Washington USA

4. Inland Orthopedic Surgery and Sports Medicine Clinic Pullman Washington USA

5. Department of Biomedical Engineering and Chemical Engineering The University of Texas at San Antonio San Antonio Texas USA

Abstract

AbstractThis work is focused on designing an easy‐to‐use novel perfusion system for articular cartilage (AC) tissue engineering and using it to elucidate the mechanism by which interstitial shear upregulates matrix synthesis by articular chondrocytes (AChs). Porous chitosan‐agarose (CHAG) scaffolds were synthesized and compared to bulk agarose (AG) scaffolds. Both scaffolds were seeded with osteoarthritic human AChs and cultured in a novel perfusion system with a medium flow velocity of 0.33 mm/s corresponding to 0.4 mPa surfice shear and 40 mPa CHAG interstitial shear. While there were no statistical differences in cell viability for perfusion versus static cultures for either scaffold type, CHAG scaffolds exhibited a 3.3‐fold higher (p < 0.005) cell viability compared to AG scaffold cultures. Effects of combined superficial and interstitial perfusion for CHAG showed 150‐ and 45‐fold (p < 0.0001) increases in total collagen (COL) and 13‐ and 2.2‐fold (p < 0.001) increases in glycosaminoglycans (GAGs) over AG non‐perfusion and perfusion cultures, respectively, and a 1.5‐fold and 3.6‐fold (p < 0.005) increase over non‐perfusion CHAG cultures. Contrasting CHAG perfusion and static cultures, chondrogenic gene comparisons showed a 3.5‐fold increase in collagen type II/type I (COL2A1/COL1A1) mRNA ratio (p < 0.05), and a 1.3‐fold increase in aggrecan mRNA. Observed effects are linked to NF‐κB signal transduction pathway inhibition as confirmed by a 3.2‐fold (p < 0.05) reduction of NF‐κB mRNA expression upon exposure to perfusion. Our results demonstrate that pores play a critical role in improving cell viability and that interstitial flow caused by medium perfusion through the porous scaffolds enhances the expression of chondrogenic genes and extracellular matrix through downregulating NF‐κB1.

Funder

National Institutes of Health

National Science Foundation

Publisher

Wiley

Subject

Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3