Application of augmented reality models of canine skull in veterinary anatomical education

Author:

Jiang Nan1,Jiang Zhongling1,Huang Yufeng1,Sun Mingju1,Sun Xuejing1,Huan Yanjun1,Li Fangzheng1ORCID

Affiliation:

1. College of Veterinary Medicine Qingdao Agricultural University Qingdao People's Republic of China

Abstract

AbstractVeterinary anatomy plays a crucial role in the curriculum for veterinary medicine and surgery. The integration of modern information technology in veterinary education can greatly benefit from innovative tools such as augmented reality (AR) applications. The aim of this study was to develop an accurate and interactive three‐dimensional (3D) digital model of an animal skull using AR technology, aiming to enhance the learning of skull anatomy in veterinary anatomy education. In this study, a canine skull specimen was isolated, and the skull bones were scanned using a structured light scanner to create a 3D digital model of the canine skull, which was found to be indistinguishable from the original specimen by measurement of skull proportions. Furthermore, the interactive AR model of the canine skull, displayed using Unity3D, was subjected to testing and evaluation by 60 first‐year veterinary medical students attending the gross anatomy of the animal. The students were divided into two groups: the traditional group and AR group. Both groups completed an objective test and a questionnaire. The evaluation of learning effectiveness in the test revealed no significant difference between the traditional group (which learned using textbooks and a canine skull specimen) and AR group (which learned using AR tools). However, in the questionnaire, students displayed high enthusiasm and interest in using the AR tool. Therefore, the application of AR tools can improve students' motivation for learning and enhance the comprehension of anatomical structures in three dimensions. Furthermore, this study exemplifies the use of AR as an auxiliary tool for teaching and learning in veterinary anatomy education.

Publisher

Wiley

Subject

Embryology,General Medicine,Histology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3