Improving the Performance of the Machining Process by Using Ultra‐Advanced Tools in a Clean Turning of Inconel 686 Using the Minimum Quantity Lubrication Method

Author:

Hosseini Tazehkandi Ahmadreza1ORCID,Shabgard Mohammadreza1,Tutunchi Abolfazl1

Affiliation:

1. Department of Manufacturing Engineering, Faculty of Mechanical Engineering University of Tabriz Tabriz Iran

Abstract

ABSTRACTThe high tensile strength and high resistance of nickel‐based superalloy 686 against high temperatures and corrosion rates have made it a widely used in important applications such as the aerospace industry, high pollution‐ and corrosion‐resistance equipment manufacturing and petrochemical industry. Therefore, the machining of this advanced alloy with its unique properties is extremely important and can be challenging. Significant increase in input parameters levels, reduction of machining costs, improvement of surface and subsurface properties and clean production are among the issues that should be considered in dealing with Inconel 686 turning operations. Simultaneous application of advanced tools such as polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) and optimised minimum quantity lubrication (MQL) method and evaluating the results obtained with a wide range of output parameters related to machining process performance and tribological properties can be proposed as an innovation and a solution to this problem in this article. This study analyses several output parameters with different speeds and feeds to evaluate the effect of cutting insert type on machining process performance and tribological properties. The output parameters include tool wear, residual stress, cutting zone temperature, surface smoothness, machining forces and workpiece surface defects. The results indicated that using the optimised MQL method reduces the size of lubricant droplets and increases the surface covered by cooling. With these changes, the performance of the machining process and the parameters related to the surface integrity increase significantly. Among the parameters associated with the performance of the machining process, the PCD tool reduces the cutting zone temperature by 23%, the tool wear by 19% and the machining forces by 18% compared to the PCBN tool. In the parameters related to surface integrity, this method reduces the residual stress by 19% and the surface roughness by 9% compared to the PCBN tool. From the production index perspective, the PCD tool can significantly increase the cutting speed and feed rate, reducing production time and costs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3