Affiliation:
1. Institute of Electrical Engineering Chinese Academy of Science Beijing 100190 China
2. School of Engineering Science University of Chinese Academy of Sciences Beijing 100049 China
Abstract
AbstractThe development of high‐temperature resistant dielectrics with excellent dielectric properties and self‐healing behavior is crucial for the application of metallized film capacitors. In this work, a series of polyetherimide (PEI) dielectric films are designed and fabricated. The introduction of polar groups is in favor to the increase of permittivity, and the flexible connection such as the ether group will facilitate the reduction of dielectric loss. Moreover, the oxygen elements are beneficial to the “self‐healing” of metallized film capacitors. Consequently, the permittivity of 3.53–4.00, dissipation factor of 0.281–0.517%, and Weibull breakdown strength of 347–674 MV m−1 are obtained for the PEI dielectrics. In addition, PEI‐4 (BPADA‐BAPP) and PEI‐8 (BPADA‐MDA) are selected to further investigate dielectric breakdown (150 °C), electrical displacement‐electric filed (D‐E) loop (at room temperature and 150 °C) as well as self‐healing performance, which will evaluate their potential in practical applications. The results show that PEI‐8 has stable breakdown field strength and high charge–discharge efficiency at elevated temperatures. Metallized film capacitor based on PEI‐8 exhibits excellent self‐healing performance, with pleasing self‐clear morphology, high breakdown voltage, and reduced self‐healing energy. Therefore, PEI‐8 is considered as a potential candidate for metallized film capacitors applied under harsh conditions.
Subject
Materials Chemistry,Polymers and Plastics,Organic Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献