Novel Polyetherimide Dielectrics: Molecular Design, Energy Storage Property, and Self‐Healing Performance

Author:

Cao Shimo12,Tong Hui1ORCID,Wang Silin12,Liu Junbiao12

Affiliation:

1. Institute of Electrical Engineering Chinese Academy of Science Beijing 100190 China

2. School of Engineering Science University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractThe development of high‐temperature resistant dielectrics with excellent dielectric properties and self‐healing behavior is crucial for the application of metallized film capacitors. In this work, a series of polyetherimide (PEI) dielectric films are designed and fabricated. The introduction of polar groups is in favor to the increase of permittivity, and the flexible connection such as the ether group will facilitate the reduction of dielectric loss. Moreover, the oxygen elements are beneficial to the “self‐healing” of metallized film capacitors. Consequently, the permittivity of 3.53–4.00, dissipation factor of 0.281–0.517%, and Weibull breakdown strength of 347–674 MV m−1 are obtained for the PEI dielectrics. In addition, PEI‐4 (BPADA‐BAPP) and PEI‐8 (BPADA‐MDA) are selected to further investigate dielectric breakdown (150 °C), electrical displacement‐electric filed (D‐E) loop (at room temperature and 150 °C) as well as self‐healing performance, which will evaluate their potential in practical applications. The results show that PEI‐8 has stable breakdown field strength and high charge–discharge efficiency at elevated temperatures. Metallized film capacitor based on PEI‐8 exhibits excellent self‐healing performance, with pleasing self‐clear morphology, high breakdown voltage, and reduced self‐healing energy. Therefore, PEI‐8 is considered as a potential candidate for metallized film capacitors applied under harsh conditions.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3