High Glass Transition Temperature Fluorinated Polymers Based on Transfer Learning with Small Experimental Data

Author:

Yang Jin‐Hoon1ORCID,Lee Jiyoung2,Kwon Hajin2,Sohn Eun‐Ho2,Chang Hyunju1,Jang Seunghun1ORCID

Affiliation:

1. Chemical Data‐Driven Research Center Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea

2. Interface Materials and Engineering Laboratory Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea

Abstract

AbstractMachine learning can be used to predict the properties of polymers and explore vast chemical spaces. However, the limited number of available experimental datasets hinders the enhancement of the predictive performance of a model. This study proposes a machine learning approach that leverages transfer learning and ensemble modeling to efficiently predict the glass transition temperature (Tg) of fluorinated polymers and guide the design of high Tg copolymers. Initially, the quantum machine 9 (QM9) dataset is employed for model pretraining, thus providing robust molecular representations for the subsequent fine‐tuning of a specialized copolymer dataset. Ensemble modeling is used to further enhance prediction robustness and reliability, effectively addressing the problems owing to the limited and unevenly distributed nature of the copolymer dataset. Finally, a fine‐tuned ensemble model is used to navigate a vast chemical space comprising 61 monomers and identify promising candidates for high Tg fluorinated polymers. The model predicts 247 entries capable of achieving a Tg over 390 K, of which 14 are experimentally validated. This study demonstrates the potential of machine learning in material design and discovery, highlighting the effectiveness of transfer learning and ensemble modeling strategies for overcoming the challenges posed by small datasets in complex copolymer systems.

Funder

Korea Research Institute of Chemical Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3