Affiliation:
1. Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
2. Department of Chemistry University of Tennessee Knoxville TN 37996 USA
Abstract
AbstractPolymer single crystals are used as templates to synthesize polymer brushes, known as the “polymer‐single‐crystal‐assisted‐grafting‐to” (PSCAGT) approach. Polymer brushes with controlled grafting densities and spatial tethering locations are demonstrated. Previous works focused on solution crystallization, which involves large amounts of organic solvent, and the grafting density can only be tuned by varying crystallization temperatures. In this work, thin film crystallization is utilized to fabricate 2D polymer crystals on flat surfaces. Subsequent chemical tethering leads to polymer brushes that retain the original morphology of the crystals with high fidelity. Furthermore, it is shown that the grafting density of the polymer brushes fabricated using this method depends on the chain end distribution on the top/bottom surfaces of the crystal, which can be facilely controlled by annealing the crystals at various nonsolvent media. This work broadens the scope of the PSCAGT method and provides a new route to achieve polymer brushes with controlled structures.
Funder
National Science Foundation
Subject
Materials Chemistry,Polymers and Plastics,Organic Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献