Facilely Control Grafting Density and Side Chain Composition of Bottlebrush Polymer

Author:

Xiao Longqiang12,Gao Danni1,Hou Linxi123ORCID

Affiliation:

1. Department of Materials‐Oriented Chemical Engineering College of Chemical Engineering Fuzhou University Fuzhou 350116 P.R. China

2. Division of Electronic Chemicals Qingyuan Innovation Laboratory Quanzhou 362801 P.R. China

3. Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals Fuzhou University Fuzhou 350116 P.R. China

Abstract

AbstractControl over polymer architecture and composition is essential for disclosing structure‐property relationships and developing high‐performance materials. Herein, a new method is successfully developed to synthesize bottlebrush polymer (BP) with controllable graft density and side chain composition by “grafting‐from” strategy using in situ halogen exchange and reversible chain transfer catalyzed polymerization (RTCP). The main chain of the BP is first synthesized by the polymerization of methacrylates containing alkyl bromide as a side group. Then, the alkyl bromine is quantitatively converted to alkyl iodide with sodium iodide (NaI) via in situ halogen exchange to efficiently initiate the RTCP of methacrylates. By adjusting the input amount of NaI and monomers in sequence, BP named PBPEMA‐g‐PMMA/PBzMA/PPEGMEMA which contains three different kinds of polymer side chains including hydrophilic PPEGMEMA, hydrophobic PMMA, and PBzMA is synthesized with narrow molecular weight distribution (Mw/Mn ≤ 1.36). The grafting density and the chain length of each polymer side chain are well controlled by the addition of NaI in batches and following RTCP. Moreover, the obtained BP self‐assembled into spherical vesicles in aqueous with hydrophilic coronal structure, core region, and the hydrophobic wall between the former two, which enables to wrap hydrophobic pyrene and hydrophilic Rhodamine 6G separately or simultaneously.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3