Unusual Stress Upturn in Elastomers Prepared Using Macro Cross‐Linkers with Multiple Vinyl Side Groups

Author:

Mizuno Tatsuya1,Hayashi Mikihiro1ORCID,Takahashi Rintaro2

Affiliation:

1. Department of Life Science and Applied Chemistry, Graduate School of Engineering Nagoya Institute of Technology Gokiso‐cho Showa‐ku Nagoya‐city Aichi 466‐8555 Japan

2. Department of Energy Engineering, Graduate School of Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya‐city Aichi 464‐8603 Japan

Abstract

AbstractIn this study, the unique tensile properties of acrylate elastomers prepared using macro cross‐linker polymers with multiple vinyl side groups are analyzed. For the preparation of the macro cross‐linker, poly(ethyl acrylate) copolymers bearing hydroxy functional groups are synthesized, followed by the hydroxy‐isocyanate reaction with 2‐isocyanatoethyl acrylate. Subsequently, the elastomers samples are prepared by UV polymerization of ethyl acrylate in the presence of the macro cross‐linkers. The tensile properties of the elastomers in the small elongation region are similar to those of typical elastomers prepared using divinyl cross‐linkers, whereas the stress upturn in the large elongation region is considerably different. The stress upturn varies based on the fraction of vinyl side groups in the macro cross‐linkers, whereas stress in the small elongation region remains unchanged. These properties are analyzed using various theoretical models. The results reveal that there is artificial inhomogeneity in the cross‐link density for samples prepared by the macro cross‐linkers, where the short poly(ethyl acrylate) strands inside the macro cross‐linker limit the overall chain stretchability. On the whole, this study demonstrates a new method for tuning elastomer properties, especially at large deformation.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3