Citric Acid and Polyvinyl Alcohol Induced PEDOT: PSS with Enhanced Electrical Conductivity and Stretchability for Eco‐Friendly, Self‐Healable, Wearable Organic Thermoelectrics

Author:

Lu Lijun1,Cao Guibin1,Huang Yueting1,Yan Yibin1,Liang Yongxin1,Zhao Boyu1,Chen Zhifu1,Gao Chunmei1ORCID,Wang Lei2

Affiliation:

1. College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 China

2. Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China

Abstract

AbstractPoly(3,4‐ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) is a promising material for organic thermoelectric (TE) applications. However, it is challenging to achieve PEDOT: PSS composites with stretchable, self‐healable, and high TE performance. Furthermore, some existing self‐healing TE materials employ toxic reagents, posing risks to human health and the environment. In this study, a novel intrinsically self‐healable and wearable composite is developed by incorporating environmentally friendly, highly biocompatible, and biodegradable materials of polyvinyl alcohol (PVA) and citric acid (CA) into PEDOT: PSS. This results in the formation of double hydrogen bonding networks among CA, PVA, and PEDOT: PSS, inducing microstructure alignment and leading to simultaneous enhancements in both TE performance and stretchability. The resulting composites exhibit a high electrical conductivity and power factor of 259.3 ± 11.7 S·cm−1, 6.9 ± 0.4 µW·m−1·K−2, along with a tensile strain up to 68%. Furthermore, the composites display impressive self‐healing ability, with 84% recovery in electrical conductivity and an 85% recovery in tensile strain. Additionally, the temperature and strain sensors based on the PEDOT: PSS/PVA/CA are prepared, which exhibit high resolution suitable for human–machine interaction and wearable devices. This work provides a reliable and robust solution for the development of environmentally friendly, self‐healing and wearable TE thermoelectrics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3