Progress in Photocurable 3D Printing of Photosensitive Polyurethane: A Review

Author:

Fei Jianhua1ORCID,Rong Youjie1,Zhu Lisheng1,Li Huijie1,Zhang Xiaomin1,Lu Ying12,An Jian34,Bao Qingbo34,Huang Xiaobo1ORCID

Affiliation:

1. Key Laboratory of Medical Metal Materials of Shanxi Province College of Materials Science and Engineering Taiyuan University of Technology Taiyuan 030024 P. R. China

2. Shanxi Bethune Hospital Shanxi Academy of Medical Science Taiyuan 030032 P. R. China

3. Shanxi Coal Center Hospital Taiyuan 030006 P. R. China

4. Department of Cardiology Cardiovascular Hospital Affiliated to Shanxi Medical University Taiyuan 030001 P. R. China

Abstract

AbstractIn recent years, as a class of advanced additive manufacturing (AM) technology, photocurable 3D printing has gained increasing attention. Based on its outstanding printing efficiency and molding accuracy, it is employed in various fields, such as industrial manufacturing, biomedical, soft robotics, electronic sensors. Photocurable 3D printing is a molding technology based on the principle of area‐selective curing of photopolymerization reaction. At present, the main printing material suitable for this technology is the photosensitive resin, a composite mixture consisting of a photosensitive prepolymer, reactive monomer, photoinitiator, and other additives. As the technique research deepens and its application gets more developed, the design of printing materials suitable for different applications is becoming the hotspot. Specifically, these materials not only can be photocured but also have excellent properties, such as elasticity, tear resistance, fatigue resistance. Photosensitive polyurethanes can endow photocured resin with desirable performance due to their unique molecular structure including the inherent alternating soft and hard segments, and microphase separation. For this reason, this review summarizes and comments on the research and application progress of photocurable 3D printing of photosensitive polyurethanes, analyzing the advantages and shortcomings of this technology, also offering an outlook on this rapid development direction.

Funder

Natural Science Foundation of Shanxi Province

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3