Structural Colored Based Humidity Sensor Consisting of High Resolution 3D Printed Photonic Crystal Coated with Ultrathin Responsive Hydrogels

Author:

Cesnik Stefan1ORCID,Rodríguez Gabriel Hernández2,Coclite Anna Maria2,Bergmann Alexander1

Affiliation:

1. Graz University of Technology Institute of Electrical Measurement and Sensor Systems Inffeldgasse 33 / I Graz 8010 Austria

2. Graz University of Technology Institute of Solid State Physics Petersgasse 16 Graz 8010 Austria

Abstract

AbstractToday, humidity sensors have become an integral part of the daily lives. In particular, humidity sensors using an electronic measuring principle have become the standard. Although these sensors have proven to be a stable measurement method, they have some disadvantages, such as their long response time or the danger of using them in explosive environments. This work introduces photonic crystals as an alternative optical measurement approach. The novel technology of ultra‐fast two‐photon polymerisation printing is combined with a thin‐film deposition process, namely iCVD. This allows to print large area high‐precision 3D templates, which are subsequently coated with a humidity responsive hydrogel thin film (p(HEMA) of 20 nm.The limits of 2PP technology are being pushed allowing the production ofs table and periodic large‐area 3D structures. The flexible customization of hydrogels for ambient conditions make them exceptionally promising for a wide range of sensing applications. Additionally, optical methods for measuring humidity seem to be an excellent alternative to overcome the limitations for current state of the art humidity sensors. The optical detection of changes in ambient air humidity is achieved by observing color changes of the printed structure within the visible wavelength range.

Funder

H2020 European Institute of Innovation and Technology

Christian Doppler Forschungsgesellschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3