Light‐Matter Interactions Revealing Load‐Induced Phase Mobility in Elastomers

Author:

Huynh Nha Uyen1,Koohbor Behrad2,Youssef George1ORCID

Affiliation:

1. Experimental Mechanics Laboratory Mechanical Engineering Department San Diego State University San Diego CA 92182 USA

2. Department of Mechanical Engineering Rowan University 201 Mullica Hill Rd. Glassboro NJ 08028 USA

Abstract

AbstractElastomers with segmental microstructure are a fascinating class of shock‐tolerant and impact‐resistant materials. However, their technological potential remains untapped due to a vague understanding of the molecular contributions to their superior mechanical behavior. Herein, in situ light‐matter interactions, to reveal the extent of microstructural mobility by temporally exploiting molecular processes during creep response, are leveraged. The segmental microstructure comprises aromatic hard domains embedded within an aliphatic soft matrix. High‐resolution digital image correlation reveals the development of strain striations, mild anisotropy, and the mechanisms responsible for domain mobility, where the rate of hard segment mobility is found to be 60% slower than that of the soft segment. Terahertz spectral analyses pinpoint the contributions of interchain hydrogen bonding of the hard segments and their significant conformational changes by observing spectral features at ≈1.2THz and ≈1.67THz. Moreover, the domain mobility is examined using experimental and computational light scattering approaches, uncovering dynamic scattering and elucidating the difference in the complex refractive index of the soft and hard segments. The study unlocks the pathway for quantitative measurements of elusive molecular mobility and conformational changes during mechanical loading and sheds light on the origin of the shock tolerance in some elastomeric polymers with segmental microstructure.

Funder

National Science Foundation

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3