Conjugation Length‐Dependent Raman Scattering Intensity of Conjugated Polymers

Author:

Yin Mingming1,Zhao Liyuan1,Liu Sujuan1,Tian Sidan1,Meng Fanling1,Luo Liang1ORCID

Affiliation:

1. National Engineering Research Center for Nanomedicine College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China

Abstract

AbstractPolydiacetylenes, as a class of conjugated polymers with alternating conjugated C═C and C≡C bonds, have emerged as a promising probe material for biomedical Raman imaging, given their ultrastrong Raman scattering intensity. However, the relationship between the structure, especially the molecular length of polydiacetylenes, and their Raman scattering intensity remains unclear. In this work, a series of water‐soluble polydiacetylenes, namely poly(deca‐4,6‐diynedioic acid) (PDDA) with different molecular weights (MWs), is prepared through controlled polymerization and degradation. The ultraviolet–visible (UV–vis) absorption spectroscopic and Raman spectroscopic studies on these polymers reveal that the Raman scattering intensity of PDDA increases nonlinearly with the MW. The MW‐Raman scattering intensity relationship in the polymerization process is completely different from that in the degradation process. In contrast, the Raman scattering intensity increases more linearly with the maximal absorbance of the polymer, and the relationship between the Raman scattering intensity and the maximal absorbance of PDDA in the polymerization process is consistent with that in the degradation process. The Raman scattering intensity of PDDA hence exhibits a better dependence on the effective conjugation length of the polymer, which should guide the future design of conjugated polymers for Raman imaging applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3