Enhancement of the effective thermal conductivity of iron oxide‐coated hexagonal boron nitride/polyimide composite sheets using samarium–cobalt magnets

Author:

Itaoka Takuro1,Matsubayashi Ryohei1,Haruki Masashi1ORCID

Affiliation:

1. Faculty of Mechanical Engineering Institute of Science and Engineering, Kanazawa University Kanazawa Japan

Abstract

AbstractThe orientation and distribution of the filler in hexagonal boron nitride (hBN) coated with iron oxide (Fe3O4@hBN)/polyimide (PI) composite sheets were controlled via magnetic field treatment (MFT) to enhance the effective thermal conductivity (TC) in the out‐of‐plane direction. Filler chain structures gradually formed in the direction of the magnetic field in the precursor solution. The effective TC of the Fe3O4@hBN/PI sheet after MFT was much higher than that of pristine hBN/PI. The effective TC of the composites was preferably improved by placing the sample near a one‐sided magnet instead of in the middle of a pair of magnets. The effective TC of 10, 20, and 30 vol% Fe3O4@hBN/PI composites improved by 59%, 53%, and 35%, respectively, compared to that of pristine hBN/PI for a magnet distance of 10 mm and with the sample placed 2 mm from the bottom magnet. These values are in good agreement with those reported in the literature using MFT. The tensile strengths of the 10, 20, and 30 vol% Fe3O4@hBN/PI composites prepared using MFT were 33%, 33%, and 22% lower, respectively, than those of the composites prepared without MFT.

Funder

Shibuya Science Culture and Sports Foundation

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3