Hepatic signal transducer and activator of transcription‐3 signalling drives early‐stage pancreatic cancer cachexia via suppressed ketogenesis

Author:

Arneson‐Wissink Paige C.1ORCID,Mendez Heike1,Pelz Katherine1,Dickie Jessica1,Bartlett Alexandra Q.2,Worley Beth L.1,Krasnow Stephanie M.3,Eil Robert2,Grossberg Aaron J.145ORCID

Affiliation:

1. Brenden‐Colson Center for Pancreatic Care Oregon Health & Science University Portland OR USA

2. Division of Surgical Oncology, Department of Surgery, Knight Cancer Institute Oregon Health & Science University Portland OR USA

3. Division of Oncological Sciences, Knight Cancer Institute Oregon Health & Science University Portland OR USA

4. Department of Radiation Medicine Oregon Health & Science University Portland OR USA

5. Cancer Early Detection Advanced Research Center Oregon Health & Science University Portland OR USA

Abstract

AbstractBackgroundPatients with pancreatic ductal adenocarcinoma (PDAC) often suffer from cachexia, a wasting syndrome that significantly reduces both quality of life and survival. Although advanced cachexia is associated with inflammatory signalling and elevated muscle catabolism, the early events driving wasting are poorly defined. During periods of nutritional scarcity, the body relies on hepatic ketogenesis to generate ketone bodies, and lipid metabolism via ketogenesis is thought to protect muscle from catabolizing during nutritional scarcity.MethodsWe developed an orthotopic mouse model of early PDAC cachexia in 12‐week‐old C57BL/6J mice. Murine pancreatic cancer cells (KPC) were orthotopically implanted into the pancreas of wild‐type, IL‐6−/−, and hepatocyte STAT3−/− male and female mice. Mice were subject to fasting, 50% food restriction, ad libitum feeding or ketogenic diet interventions. We measured longitudinal body composition by EchoMRI, body mass and food intake. At the endpoint, we measured tissue mass, tissue gene expression by quantitative real‐time polymerase chain reaction, whole‐body calorimetry, circulating hormone levels, faecal protein and lipid content, hepatic lipid content and ketogenic response to medium‐chain fatty acid bolus. We assessed muscle atrophy in vivo and C2C12 myotube atrophy in vitro.ResultsPre‐cachectic PDAC mice did not preserve gastrocnemius muscle mass during 3‐day food restriction (−13.1 ± 7.7% relative to food‐restricted sham, P = 0.0117) and displayed impaired fatty acid oxidation during fasting, resulting in a hypoketotic state (ketogenic response to octanoate bolus, −83.0 ± 17.3%, P = 0.0328; Hmgcs2 expression, −28.3 ± 7.6%, P = 0.0004). PDAC human patients display impaired fasting ketones (−46.9 ± 7.1%, P < 0.0001) and elevated circulating interleukin‐6 (IL‐6) (12.4 ± 16.5‐fold increase, P = 0.0001). IL‐6−/− PDAC mice had improved muscle mass (+35.0 ± 3.9%, P = 0.0031) and ketogenic response (+129.4 ± 44.4%, P = 0.0033) relative to wild‐type PDAC mice. Hepatocyte‐specific signal transducer and activator of transcription 3 (STAT3) deletion prevented muscle loss (+9.3 ± 4.0%, P = 0.009) and improved fasting ketone levels (+52.0 ± 43.3%, P = 0.018) in PDAC mice. Without affecting tumour growth, a carbohydrate‐free diet improved tibialis anterior myofibre diameter (+16.5 ± 3.5%, P = 0.0089), circulating ketone bodies (+333.0 ± 117.6%, P < 0.0001) and Hmgcs2 expression (+106.5 ± 36.1%, P < 0.0001) in PDAC mice. Ketone supplementation protected muscle against PDAC‐induced atrophy in vitro (+111.0 ± 17.6%, P < 0.0001 myofibre diameter).ConclusionsIn early PDAC cachexia, muscle vulnerability to wasting is dependent on inflammation‐driven metabolic reprogramming in the liver. PDAC suppresses lipid β‐oxidation and impairs ketogenesis in the liver, which is reversed in genetically modified mouse models deficient in IL‐6/STAT3 signalling or through ketogenic diet supplementation. This work establishes a direct link between skeletal muscle homeostasis and hepatic metabolism. Dietary and anti‐inflammatory interventions that restore ketogenesis may be a viable preventative approach for pre‐cachectic patients with pancreatic cancer.

Funder

National Cancer Institute

Oregon Health and Science University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3