A deep learning approach based on Richardson and Gauss–Seidel for massive MIMO detection

Author:

Yu Yongzhi1ORCID,Ying Jie1,Zhang Shiqi1,Wang Jianming1,Guo Limin1,Shang Jiadong2,Wang Ping3

Affiliation:

1. College of Information and Communication Engineering Harbin Engineering University Harbin China

2. Advanced Communication Total Technology Research Laboratory China Aerospace Science and Technology Corp No 2 Academy No 25 Research Institute Beijing China

3. Department of Electrical Engineering and Computer Science York University Toronto Ontario Canada

Abstract

AbstractMassive multiple‐input multiple‐output (MIMO) systems can improve the spectrum utilization and the system capacity, but this also increases the computational complexity of the signal detection. The existing iterative algorithms can greatly reduce the computational complexity; however, the detection performance is limited. In order to achieve a better balance between the computational complexity and the detection performance, this article combines the model‐driven deep learning approached with Massive MIMO signal detection to construct RGNet (RIGS‐based deep learning Network). First, RIGS is proposed as a hybrid method of RI (Richardson) and GS (Gauss–Seidel). The RIGS algorithm combines these methods to achieve faster convergence. However, the performance of RIGS joint algorithm is limited to the spatially correlated channel scenarios. To improve robustness, we further extend RIGS, by adding learnable parameters in each iteration and introducing staircase activation functions to significantly improve detection performance. Simulation results show that the proposed RGNet has low computational complexity and a simple and fast training process. It can also achieve excellent detection performance in Rayleigh fading channel and spatially correlated channel.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3