A comparative study for the efficiency of Pd (II) and Fe (III) complexes as efficient catalysts for synthesis of dihydro‐7H‐5‐thia‐hexaaza‐s‐indacen‐6‐one derivatives supported with DFT approach

Author:

El‐Remaily Mahmoud Abd El Aleem Ali Ali1ORCID,Eskander Thomas Nady A.1ORCID,Elhady Omar1ORCID,Alhashmialameer Dalal2ORCID,Alsehli Mosa3ORCID,Kamel Moumen S.1,Feizi‐Dehnayebi Mehran4ORCID,Abu‐Dief Ahmed M.13ORCID

Affiliation:

1. Department of Chemistry, Faculty of Science Sohag University Sohag Egypt

2. Chemistry Department, College of Science Taif University Taif Saudi Arabia

3. Chemistry Department, College of Science Taibah University Madinah Saudi Arabia

4. Department of Organic Chemistry, Faculty of Chemistry Alzahra University Tehran Iran

Abstract

Two novel complexes were synthesized by the reaction of benzothiazol‐pyrimidin‐2‐ylidene ligand (BTP) with Pd (II) and Fe (III) ions. A variety of various spectral and analytical methods (infrared, 1H/NMR, 13C/NMR, electronic spectra, CHN analyses, mass spectra, thermogravimetric analysis, and magnetic susceptibility) were used to characterize the investigated BTP ligand and its complexes. Correlation of experimental results with density functional theory calculation proves that the geometry of BTP‐Fe complex is octahedral, whereas BTP‐Pd complex is square planner. The catalytic effectiveness of BTP complexes were tested for three‐component condensation process under moderate and environmentally friendly reaction conditions. Moreover, the effects of different Lewis acid, basic, and ionic liquid catalysts, as well as solvent and catalyst dose on the catalytic reaction were investigated. Both catalysts demonstrated strong catalytic capability in the carefully regulated ideal reaction circumstances. Heterogeneous catalyst BTP‐Pd exhibited superior catalytic performance compared to homogeneous catalyst BTP‐Fe. All products were obtained in high TOF (turnover frequency) numbers in the presence of these catalysts, which indicate the high efficiency of these catalysts in the synthesis of dihydro‐7H‐5‐thia‐hexaaza‐s‐indacen‐6‐one derivatives. Moreover, the two catalysts' recycling and reusability in reactions were also investigated. Heterogeneous BTP‐Pd catalyst could be reused up to seven times with high efficiency, but the homogeneous catalyst (BTP‐Fe) could only be recycled up to four times. Furthermore, the mechanism of catalytic reaction was suggested and supported by DFT calculation. The simplicity, safety, stability, use of commercially available catalysts, quick reaction times, and excellent yields make it promising for future industrial use.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3