Physicochemical Evaluation of Remote Homology in the Twilight Zone

Author:

Dixson Jamie Dennis1,Azad Rajeev Kumar12

Affiliation:

1. Department of Biological Sciences University of North Texas Denton Texas USA

2. BioDiscovery Institute University of North Texas Denton Texas USA

Abstract

ABSTRACTA fundamental problem in the field of protein evolutionary biology is determining the degree and nature of evolutionary relatedness among homologous proteins that have diverged to a point where they share less than 30% amino acid identity yet retain similar structures and/or functions. Such proteins are said to lie within the “Twilight Zone” of amino acid identity. Many researchers have leveraged experimentally determined structures in the quest to classify proteins in the Twilight Zone. Such endeavors can be highly time consuming and prohibitively expensive for large‐scale analyses. Motivated by this problem, here we use molecular weight–hydrophobicity physicochemical dynamic time warping (MWHP DTW) to quantify similarity of simulated and real‐world homologous protein domains. MWHP DTW is a physicochemical method requiring only the amino acid sequence to quantify similarity of related proteins and is particularly useful in determining similarity within the Twilight Zone due to its resilience to primary sequence substitution saturation. This is a step forward in determination of the relatedness among Twilight Zone proteins and most notably allows for the discrimination of random similarity and true homology in the 0%–20% identity range. This method was previously presented expeditiously just after the outbreak of COVID‐19 because it was able to functionally cluster ACE2‐binding betacoronavirus receptor binding domains (RBDs), a task that has been elusive using standard techniques. Here we show that one reason that MWHP DTW is an effective technique for comparisons within the Twilight Zone is because it can uncover hidden homology by exploiting physicochemical conservation, a problem that protein sequence alignment algorithms are inherently incapable of addressing within the Twilight Zone. Further, we present an extended definition of the Twilight Zone that incorporates the dynamic relationship between structural, physicochemical, and sequence‐based metrics.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3