GPCR Signaling: A Study of the Interplay Between Structure, Energy, and Function

Author:

Chalopin Yann1

Affiliation:

1. Structures, Properties and Modeling of Solids Laboratory Physics Department CentraleSupélec/National Center for the Scientific Research, University of Paris‐Saclay Gif‐sur‐Yvette France

Abstract

ABSTRACTG protein‐coupled receptors (GPCRs) exemplify sophisticated allosteric communication, transducing extracellular signals through ligand‐induced structural rearrangements that resonate through the molecular scaffold. Despite extensive study, the biophysical underpinnings of how conformational changes spread remain unclear. This work employs a novel physics‐based framework to characterize the role of energy dissipation in directing intramolecular signaling pathways. By modeling each residue as a network of coupled oscillators, we generate a localization landscape depicting the vibrational energy distribution throughout the protein scaffold. Quantifying directional energy flux between residues reveals distinct pathways for energy and information transfer, illuminating sequences of allosteric communication. Our analysis of CB1 and CCR5 crystal structures unveils an anisotropic pattern of energy dissipation aligning with key functional dynamics, such as activation‐related conformational changes. These anisotropic patterns of vibrational energy flow constitute pre‐configured channels for allosteric signaling. Elucidating the relationship between structural topology and energy dissipation patterns provides key insights into the thermodynamic drivers of conformational signaling. This methodology significantly advances our mechanistic understanding of allostery in GPCRs and presents a broadly applicable approach for rationally dissecting allosteric communication pathways, with potential implications for structure‐based drug design targeting these critical receptors.

Funder

Agence Nationale de la Recherche

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3