Integrin αM promotes macrophage alternative M2 polarization in hyperuricemia‐related chronic kidney disease

Author:

Liu Jing1ORCID,Guo Fan1,Chen Xiaoting2,Fu Ping1,Ma Liang1ORCID

Affiliation:

1. Division of Nephrology, Institute of Kidney Diseases West China Hospital of Sichuan University Chengdu China

2. Animal Experimental Center West China Hospital of Sichuan University Chengdu China

Abstract

AbstractHyperuricemia is an essential risk factor in chronic kidney disease (CKD), while urate‐lowering therapy to prevent or delay CKD is controversial. Alternatively activated macrophages in response to local microenvironment play diverse roles in kidney diseases. Here, we aim to investigate whether and how macrophage integrin αM (ITGAM) contributes to hyperuricemia‐related CKD. In vivo, we explored dynamic characteristics of renal tissue in hyperuricemia‐related CKD mice. By incorporating transcriptomics and phosphoproteomics data, we analyzed gene expression profile, hub genes and potential pathways. In vitro, we validated bioinformatic findings under different conditions with interventions corresponding to core nodes. We found that hyperuricemia‐related CKD was characterized by elevated serum uric acid levels, impaired renal function, activation of macrophage alternative (M2) polarization, and kidney fibrosis. Integrated bioinformatic analyses revealed Itgam as the potential core gene, which was associated with focal adhesion signaling. Notably, we confirmed the upregulated expression of macrophage ITGAM, activated pathway, and macrophage M2 polarization in injured kidneys. In vitro, through silencing Itgam, inhibiting p‐FAK or p‐AKT1 phosphorylation, and concurrent inhibiting of p‐FAK while activating p‐AKT1 all contributed to the modulation of macrophage M2 polarization. Our results indicated targeting macrophage ITGAM might be a promising therapeutic approach for preventing CKD.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3