Assessing the isotopic biases of soil water from cryogenic water extraction in different soil types in China

Author:

Zhao Pei12,Yang Weige2,Sun Xiangyang3ORCID

Affiliation:

1. School of Tourism & Research Institute of Human Geography Xi'an International Studies University Xi'an China

2. Ecohydrology Observation and Research Station of the Southern Qinling Mountains Shangluo University Shangluo China

3. State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University Chengdu China

Abstract

AbstractThe utilization of deuterium (δ2H) and oxygen (δ18O) isotope ratios in cryogenically extracted water from soil samples is a widely employed method in hydrological and ecological research. Nevertheless, an increasing body of research indicates that cryogenic water extraction (CWE) leads to δ2H depletion in soil water. To investigate the widespread existence of this phenomenon, samples from eight physicochemically distinct soils in China underwent rehydration with a reference water at five different water contents and were subsequently extracted using CWE. In comparison to the reference water, significant and inconsistent δ2H depletion was observed in all eight soil samples. The δ18O bias also exhibited variation, ranging from enrichment to depletion. Generally, Z score assessments indicated unacceptable results for all soils. Water content emerged as the most influential variable affecting both δ2H and δ18O biases, while soil properties had different impacts on these biases. Source water, as calculated by a linear regression model, revealed that the isotopic composition of extracted soil water differed from that of the reference water. The cryogenic extraction error in soil water could not solely attributed to fractionation processes during the extraction but resulted from the release of tightly bound soil water into the reference water. Using the influencing factors, correction models for δ2H and δ18O biases by CWE were developed. By these models, the δ2H and δ18O biases were mostly successful corrected. High soil water extraction efficiency (e.g., 99%) was recommended to minimize isotopic biases. These efforts necessitate further testing, particularly in ecohydrological studies involving isotope measurements of soil water through CWE.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3