Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy

Author:

Cikes Maja1,Sanchez-Martinez Sergio2,Claggett Brian3,Duchateau Nicolas4,Piella Gemma2,Butakoff Constantine2,Pouleur Anne Catherine5,Knappe Dorit6,Biering-Sørensen Tor37,Kutyifa Valentina8,Moss Arthur8,Stein Kenneth9,Solomon Scott D.3,Bijnens Bart210

Affiliation:

1. Department of Cardiovascular Diseases; University of Zagreb School of Medicine, and University Hospital Center Zagreb; Zagreb Croatia

2. Department of Information and Communication Technologies; University Pompeu Fabra; Barcelona Spain

3. Brigham and Women's Hospital; Boston MA USA

4. Creatis; CNRS UMR5220, INSERM U1206, Université Lyon 1; France

5. Division of Cardiology; Cliniques Saint-Luc UCL; Brussels Belgium

6. University Heart Center Hamburg; Hamburg Germany

7. Herlev & Gentofte Hospital - Copenhagen University; Copenhagen Denmark

8. University of Rochester; Rochester NY USA

9. Boston Scientific; Minneapolis MN USA

10. ICREA; Barcelona Spain

Funder

‘la Caixa’ Banking Foundation

Fundació la Marató de TV3

‘Programme Avenir Lyon Saint-Etienne’

Boston Scientific

Spanish Ministry of Economy and Competitiveness

FEDER

Publisher

Wiley

Subject

Cardiology and Cardiovascular Medicine

Reference30 articles.

1. Machine learning in heart failure: ready for prime time;Awan;Curr Opin Cardiol,2018

2. Characterization of myocardial motion patterns by unsupervised multiple kernel learning;Sanchez-Martinez;Med Image Anal,2017

3. Phenomapping for novel classification of heart failure with preserved ejection fraction;Shah;Circulation,2015

4. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis;Motwani;Eur Heart J,2017

5. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs;Gulshan;JAMA,2016

Cited by 194 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3