Graphitic carbon nitride nanomaterials for high‐performance supercapacitors

Author:

Chen Yunxuan1,Lu Chao1ORCID

Affiliation:

1. College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China

Abstract

AbstractGraphitic carbon nitride is a promising material as an electrode material for advanced electrochemical energy storage devices because of its controllable structure, physicochemical properties, and abundant active sites. However, its intrinsic properties as electrode materials can not be fully expressed owing to limited electrical properties, which impede charge transfer and material exchange inside devices. During the past decade, the challenge has been addressed through material engineering strategies, such as exfoliation and composition, and then advanced energy devices, such as supercapacitors, have been assembled. In this regard, a timely review of graphitic carbon nitride for high‐performance supercapacitors requires to be put forward for summarizing past studies and inspiring future research works as well. This review article summarizes recent progress in material synthesis and property regulation of graphitic carbon nitride nanomaterials and their application in assembling advanced supercapacitors with high energy density and superior working stability. Finally, based on existing research and our experimental experience, a perspective for directing future research has been presented concerning material synthesis and electrochemical application of graphitic carbon nitride.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3