Effect of cellulose reducing ends and primary hydroxyl groups modifications on cellulose‐cellulase interactions and cellulose hydrolysis

Author:

Kumar Rajeev12ORCID,Bhagia Samarthya13ORCID,Mittal Ashutosh4,Wyman Charles E.125

Affiliation:

1. Center for Environmental Research and Technology (CE‐CERT), Bourns College of Engineering University of California Riverside Riverside California USA

2. BioEnergy Science Center (BESC), Oak Ridge National Laboratory (ORNL) Oak Ridge Tennessee USA

3. Biosciences Division Oak Ridge National Laboratory (ORNL) Oak Ridge Tennessee USA

4. Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL) Golden Colorado USA

5. Department of Chemical and Environmental Engineering, Bourns College of Engineering University of California Riverside Riverside California USA

Abstract

AbstractCellulose reducing ends are believed to play a vital role in the cellulose recalcitrance to enzymatic conversion. However, their role in insoluble cellulose accessibility and hydrolysis is not clear. Thus, in this study, reducing ends of insoluble cellulose derived from various sources were modified by applying reducing and/or oxidizing agents. The effects of cellulose reducing ends modification on cellulose reducing ends, cellulose structure, and cellulose accessibility to cellulase were evaluated along with the impact on cellulose hydrolysis with complete as well purified cellulase components. Sodium borohydride (NaBH4) reduction and sodium chlorite‐acetic acid (SC/AA) oxidation were able to modify more than 90% and 60% of the reducing ends, respectively, while the bicinchoninic acid (BCA) reagent applied for various cycles oxidized cellulose reducing ends to various extents. X‐ray diffractograms of the treated solids showed that these treatments did not change the cellulose crystalline structure and the change in crystallinity index was insignificant. Surprisingly, it was found that the cellulose reducing ends modification, either through selective NaBH4 reduction or BCA oxidation, had a negligible impact on cellulose accessibility as well on cellulose hydrolysis rates or final conversions with complete cellulase at loadings as low as 0.5 mg protein/g cellulose. In fact, in contrast to what is traditionally believed, modifications of cellulose reducing ends by these two methods had no apparent impact on cellulose conversion with purified cellulase components and their synergy. However, SC/AA oxidation resulted in significant drop in cellulose conversion (10%–50%) with complete as well purified cellulase components. Nonetheless, further research revealed that the cause for drop in cellulose conversion for the SC/AA oxidation case was due to primary hydroxyl groups (PHGs) oxidation and not the oxidation of reducing ends. Furthermore, it was found that the PHGs modification affects cellulose accessibility and slows the cellulase uptake as well resulting in significant drop in cellulose conversions.

Funder

U.S. Department of Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3