SPEED‐MODE cell line development (CLD): Reducing Chinese hamster ovary (CHO) CLD timelines via earlier suspension adaptation and maximizing time spent in the exponential growth phase

Author:

Ganapathy Kavya1ORCID,Lam Cynthia1,Tsukuda Joni1,Sargon Alyssa1,Nava Adrian1,Harms Peter1,Shen Amy1ORCID,Barnard Gavin1,Misaghi Shahram1

Affiliation:

1. Cell Culture and Bioprocess Operations Department Genentech Inc. South San Francisco California USA

Abstract

AbstractChinese hamster ovary (CHO) cells are the preferred system for expression of therapeutic proteins and the majority of all biotherapeutics are being expressed by these cell lines. CHO expression systems are readily scalable, resistant to human adventitious agents, and have desirable post‐translational modifications, such as glycosylation. Regardless, drug development as a whole is a very costly, complicated, and time‐consuming process. Therefore, any improvements that result in reducing timelines are valuable and can provide patients with life‐saving drugs earlier. Here we report an effective method (termed SPEED‐MODE, herein) to speed up the Cell line Development (CLD) process in a targeted integration (TI) CHO CLD system. Our findings show that (1) earlier single cell cloning (SCC) of transfection pools, (2) speeding up initial titer screening turnaround time, (3) starting suspension adaptation of cultures sooner, and (4) maximizing the time CHO cultures spend in the exponential growth phase can reduce CLD timelines from ~4 to ~3 months. Interestingly, SPEED‐MODE timelines closely match the theoretical minimum timeline for CHO CLD assuming that CHO cell division is the rate limiting factor. Clones obtained from SPEED‐MODE CLD yielded comparable titer and product quality to those obtained via a standard CLD process. Hence, SPEED‐MODE CLD is advantageous for manufacturing biotherapeutics in an industrial setting as it can significantly reduce CLD timelines without compromising titer or product quality.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3