Evaluating the Alaska Blocking Index as an indicator of wildfire potential in Alaska's central eastern interior

Author:

Ballinger Thomas J.1ORCID,Lader Rick T.1ORCID,Bieniek Peter A.1,Strader Heidi2,Ziel Robert3,Bhatt Uma S.45,Borries‐Strigle Cecilia145,Hostler Joshua45,Stevens Eric2,Waigl Christine F.1,York Alison3

Affiliation:

1. International Arctic Research Center University of Alaska Fairbanks Fairbanks Alaska USA

2. Alaska Interagency Coordination Center Fairbanks Alaska USA

3. Alaska Fire Science Consortium Fairbanks Alaska USA

4. Geophysical Institute University of Alaska Fairbanks Fairbanks Alaska USA

5. Department of Atmospheric Sciences University of Alaska Fairbanks Fairbanks Alaska USA

Abstract

AbstractIncreased Arctic air temperatures and evaporative fluxes have coincided with more frequent and destructive high‐latitude wildfires. Arctic fires impact ecosystems and people, especially at the community‐level by degrading air quality, destroying agriculture, and threatening life and property. Central Eastern Interior (CEI) Alaska is one such region that has recently experienced the effects of wildfire activity related to warming air temperatures. To improve our ability to identify fire weather events and assess their potential for extreme outbreaks at actionable lead times relevant to fire weather forecasters and managers, new metrics and approaches need to be established and applied toward understanding the physical mechanisms underlying such wildland fire characteristics. Our study uses a new, regional atmospheric circulation metric, the Alaska Blocking Index (ABI), to describe midtropospheric air pressure around Alaska, which is subsequently related to CEI fire weather conditions at the Predictive Service Area (PSA) scale in climatological and extreme events frameworks. Of note, during years of high fire activity, Build‐Up Index (BUI) values tend to be anomalously high during the duff and drought phases across the CEI PSAs, though comparatively lower BUI values are still associated with high fire activity in the Tanana Zone‐South (AK03S) PSA. Likewise, extreme BUI values are strongly tied to high ABI values and well‐defined upper‐air ridging circulation patterns in the duff and drought periods. The statistical skill of mean daily ABI values in the 6–10 day period preceding extreme duff period BUI values is modest (τ2 > 14%) in the Upper Yukon Valley (AK02) PSA, a hotbed of wildland fire activity. Extremes in ABI and CEI BUI often occur in tandem, yielding regional predictability of upper‐air weather patterns and extremes and underlying surface weather conditions, by statistical and/or dynamical forecast models, imperative for local community and governmental organizations to effectively manage and allocate Alaska's fire weather resources.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3