Uncertainty quantification and identification of SST turbulence model parameters based on Bayesian optimization algorithm in supersonic flow

Author:

Yang Maotao12,Guo Mingming12,Zhang Yi2,Tian Ye12ORCID,Yi Miaorong2,Le Jialing2,Zhang Hua1

Affiliation:

1. School of Information Engineering Southwest University of Science and Technology Mianyang Sichuan China

2. Institute of Aerospace Technology China Aerodynamics Research and Development Center Mianyang Sichuan China

Abstract

AbstractThe Reynolds‐Averaged Navier–Stokes (RANS) model is the main model in engineering applications today. However, the normal value of the closure coefficient of the RANS turbulence model is determined based on some simple basic flows and may no longer be applicable for complex flows. In this paper, the closure coefficient of shear stress transport (SST) turbulence model is recalibrated by combining Bayesian method and particle swarm optimization algorithm, so as to improve the numerical simulation accuracy of wall pressure in supersonic flow. First, the obtained prior samples were numerically calculated, and the Sobol index of the closure coefficient was calculated by sensitivity analysis method to characterize the sensitivity of the wall pressure to the model parameters. Second, combined with the uncertainty of propagation parameters by non‐intrusive polynomial chaos (NIPC). Finally, Bayesian optimization is used to quantify the uncertainty and obtain the maximum likelihood function estimation and optimal parameters. The results show that the maximum relative error of wall pressure predicted by the SST turbulence model decreases from 29.71% to 9.00%, and the average relative error decreases from 9.86% to 3.67% through the parameter calibration of Bayesian optimization method. In addition, the system evaluated the calibration effect of three criteria, and the calibration results parameters under the three criteria were all better than the calculated results of the nominal values. Meanwhile, the velocity profile and density profile of the flow field were also analyzed. Finally, the same calibration method was applied to the supersonic hollow cylinder and BSL (Baseline) turbulence model, and the same calibration results were obtained, which verified the universality of the calibration method.

Publisher

Wiley

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3