Rational design of self‐assembling ultrashort peptides for the shape‐ and size‐tunable synthesis of metal nanostructures

Author:

Rajchakit Urawadee12ORCID,Glossop Hugh Douglas13ORCID,Wang Kelvin4,Lu Jun4ORCID,Sarojini Vijayalekshmi12ORCID

Affiliation:

1. School of Chemical Sciences and The Centre for Green Chemical Science University of Auckland Auckland New Zealand

2. The MacDiarmid Institute for Advanced Materials and Nanotechnology Wellington New Zealand

3. Department of Biomedical Engineering Pennsylvania State University University Park PA USA

4. Auckland Bioengineering Institute University of Auckland Auckland New Zealand

Abstract

Peptides have attracted great interest as platforms for the design of nanocomposite hydrogels due to their distinct bioactivity, biofunctionality and biocompatibility. Previously, we have reported on a family of peptides that self‐assembled to form stabilised three‐dimensional hydrogel networks, displaying potent antimicrobial activity. In this paper, we report on the use of these hydrogelator sequences and their analogues as stabilisers and growth controllers to synthesise anisotropic gold nanoparticles (AuNPs) of different sizes and shapes. In particular, hollow spherical nanoparticles were obtained for HG2.81‐AuNPs, whereas hexagonal nanoparticles were observed for TOH_1N‐AuNPs and PentaOH‐AuNPs in their respective hydrogel networks. The PentaOH‐AuNPs' hydrogel exhibited excellent results with high antimicrobial potency against Staphylococcus aureus and Pseudomonas aeruginosa ATCC 27853 and negligible cytotoxicity. On the other hand, TOH_1N‐AuNPs showed no antibacterial activity and no cytotoxicity, demonstrating the versatility of these peptides. This work gives credence towards the development of these materials towards further applications such as in tissue culture technology and wound dressing materials.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3