Multisensor fusion‐based maritime ship object detection method for autonomous surface vehicles

Author:

Zhang Qi1,Shan Yunxiao1234ORCID,Zhang Ziquan1,Lin Hongquan5,Zhang Yunfei6,Huang Kai5

Affiliation:

1. School of Artificial Intelligence Sun Yat‐sen University Zhuhai Guangdong China

2. The Shenzhen Institute Sun Yat‐sen University Shenzhen Guangdong China

3. The Southern Marine Science and Engineering Guangdong Laboratory Zhuhai China

4. Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou Guangdong China

5. School of Computer Science and Engineering Sun Yat‐sen University Guangzhou Guangdong China

6. Zhuhai Yunzhou Intelligent Technology Co., Ltd. Zhuhai Guangdong China

Abstract

AbstractAutonomous surface vehicles face the challenge of accurately detecting nearby ships in the complex and ever‐changing maritime environment, which is vastly different from land areas. To address this issue, we propose an image‐based multisensor fusion object detection method that combines Light Detection and Rangings and cameras. Since point clouds have poor semantics, our method primarily relies on images, with point clouds used to support image detection. Our image detection scheme employs a tracking‐assisted detection method that leverages historical information to compensate for possible detection failures. Additionally, we designed a confidence‐association‐based fusion strategy to determine the final targets among the candidates. We conducted field experiments in an open‐sea area to demonstrate the accuracy and robustness of our method. The results of these experiments showed that our method is highly accurate and robust in challenging maritime scenarios. Our code and data set will be released on https://github.com/flakeice/mssd.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3