Generalized nash fairness solutions for bi‐objective minimization problems

Author:

Nguyen Minh Hieu1,Baiou Mourad1,Nguyen Viet Hung1,Vo Thi Quynh Trang1

Affiliation:

1. Univ Clermont Auvergne, Clermont Auvergne INP, Mines Saint‐Etienne, CNRS, LIMOS Clermont‐Ferrand France

Abstract

AbstractIn this article, we consider a particular case of bi‐objective optimization (BOO), called bi‐objective minimization (BOM), where the two objective functions to be minimized take only positive values. As well as for BOO, most of the methods proposed in the literature for solving BOM focus on computing the Pareto‐optimal solutions representing different trade‐offs between two objectives. However, it may be difficult for a central decision‐maker to determine the preferred solutions due to the huge number of solutions in the Pareto set. We propose a novel criterion for selecting the preferred Pareto‐optimal solutions by introducing the concept of ‐Nash Fairness (‐) solutions inspired by the definition of proportional fairness. The ‐ solutions are the feasible solutions achieving some proportional nash equilibrium between the two objectives. The positive parameter is introduced to reflect the relative importance of the first objective to the second one. For this work, we will discuss existential and algorithmic questions about the ‐ solutions by first showing their existence for BOM. Furthermore, the ‐ solution set can be a strict subset of the Pareto set. As there are possibly many ‐ solutions, we focus on extreme ‐ solutions achieving the smallest values for one of the objectives. Then, we propose two Newton‐based iterative algorithms for finding extreme ‐ solutions. Finally, we present computational results on some instances of the bi‐objective travelling salesman problem (BOTSP) and the bi‐objective shortest path problem.

Publisher

Wiley

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proportional Fairness for Combinatorial Optimization;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3