Fabrication of bacterial cellulose/PVP nanofiber composites by electrospinning

Author:

Cesur Nevra Pelin1,Zad Ghaffari Vahdat Kosar2ORCID,Türkoğlu Laçin Nelisa2

Affiliation:

1. Paracelsus Medical University Tendon and Bone Regeneration Institute Salzburg Austria

2. Yıldız Technical University Molecular Biology and Genetics Department Istanbul Turkey

Abstract

AbstractThis study aimed to address a significant challenge in the application of bacterial cellulose (BC) within tissue engineering and regenerative medicine by tackling its inherent insolubility in water and organic solvents. Our team introduced a groundbreaking approach by utilizing zinc sulfate (ZnSO4) as a solvent to render BC soluble, a novel contribution to the literature. Subsequently, the obtained soluble BC was combined with varying concentrations of polyvinylpyrrolidone (PVP). Notably, we pioneered the fabrication of BC/PVP composite scaffolds with customizable fiber surface morphology and regulated degradation rates through the electrospun technique. Several key parameters, such as PVP concentration (8%, 15%, 12%, and 20% w/v), applied voltage (22, 15, and 12 kV), and a fixed nozzle‐collector distance of 10 cm with a flow rate of 0.9 mL/h, were systematically evaluated so as to find the optimum parameter created BC/PVP product with electrospun. For electrospun BC/PVP products, a voltage of 12 kV was found to be optimal. Intriguingly, our findings revealed enhanced cell adhesion and proliferation in BC/PVP electrospun products compared with using PVP membranes alone. Specifically, cell viability for PVP and PVP/BC electrospun products was determined as 50.73% and 79.95%, respectively. In terms of thermal properties, the BC/PVP electrospun product exhibited a mass loss of 82.6% at 380°C, while PVP alone experienced 90.2% mass loss at around 280°C. Furthermore, the protein adhesion capacities were measured at 62.3 ± 1.2 μg for PVP and 99.4 ± 2 μg for BC/PVP electrospun products, whereas product showed no biodegradation over 28 days and had notable water retention capacity. In conclusion, our research not only successfully attained nanofiber morphology but also showcased enhanced cell attachment and proliferation on the BC/PVP electrospun product.

Publisher

Wiley

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3