Construction and analysis of a joint diagnostic model of machine learning for cryptorchidism based on single‐cell sequencing

Author:

Chen Yuehua1,Zhou Xiaomeng1,Ji Linghua1,Zhao Jun1,Xian Hua1,Xu Yunzhao2,Wang Ziheng34ORCID,Ge Wenliang15

Affiliation:

1. Department of Pediatric Surgery Affiliated Hospital of Nantong University, Medical School of Nantong University Nantong China

2. Department of Obstetrics and Gynecology Affiliated Hospital of Nantong University Nantong China

3. Department of Clinical Biobank Affiliated Hospital of Nantong University Nantong China

4. Centre for Precision Medicine Research and Training, Faculty of Health Sciences University of Macau Macau China

5. Department of Pediatric Surgery, School of Medicine Nantong University Nantong China

Abstract

AbstractBackgroundCryptorchidism is a condition in which one or both of a baby's testicles do not fully descend into the bottom of the scrotum. Newborns with cryptorchidism are at increased risk of developing infertility later in life. The aim of this study was to develop a novel diagnostic model for cryptorchidism and to identify new biomarkers associated with cryptorchidism.MethodsThe study data were obtained from RNA sequencing data of cryptorchid patients from Nantong University Hospital and the Gene Expression Omnibus (GEO) database. Differential expression analysis was used to obtain differentially expressed genes (DEGs) between the control and cryptorchid groups. These DEGs were analyzed for their functions by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment using GSEA software. Random Forest algorithm was used to screen central genes based on these DEGs. Neuralnet software package was used to develop artificial neural network models. Based on clinical data, receiver operating characteristic (ROC) was used to validate the models. Single‐cell sequencing analysis was used for the pathogenesis of cryptorchidism.ResultsWe obtained a total of 525 important DEGs related to cryptorchidism, which are mainly associated with biological functions such as supramolecular complexes and microtubule cytoskeleton. Random forest approach screening obtained eight hub genes. A neural network based on the hub genes showed a 100% success rate of the model. Finally, single‐cell sequencing analysis validated the hub genes.ConclusionWe developed a novel diagnostic model for cryptorchidism using artificial neural networks and validated its utility as an effective diagnostic tool.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3