A hybrid CAD/CAE/CAM project‐based laboratory framework integrating topology optimization and laser powder bed fusion for engineering education

Author:

Afify Mohammed1ORCID,Moubachir Younes2,Guennoun Zouhair1,Hassar Jamila3

Affiliation:

1. Smart Communications Research Team, University Center for Research in Space Technologies, Mohammadia School of Engineers University Mohammed V Rabat Morocco

2. Q.S.M Laboratory, University Center for Research in Space Technologies, Mohammadia School of Engineers University Mohammed V Rabat Morocco

3. Royal Center for Space Research and Studies Rabat Morocco

Abstract

AbstractIn the era of Industry 4.0, laser‐based additive manufacturing (LBAM) has gained substantial momentum in the production of complex lightweight structures in several domains such as aerospace, civil, and biomedical engineering. The increasing demand for consistent and precise manufacturing processes has urged the manufacturing industry to consider the coupling of topology optimization (TO) and laser powder bed fusion (LPBF) in the design of sophisticatedly novel topologies that are unattainable through traditional processes. Notably, this union has demonstrated a highly efficient and productive capability toward the manufacturing industry. In line with this accelerated pace, engineering programs within universities exert significant effort to revise and update their engineering curriculum design to incorporate emerging manufacturing technologies providing students with skills that are aligned with the actual industrial context. In this article, a computer‐aided design (CAD)/computer‐aided engineering (CAE)/computer‐aided manufacturing (CAM) project‐based laboratory framework is proposed combining TO and LPBF exploiting a simulation‐based environment integrating CAD, CAE, and CAM. The structure of the proposed CAD/CAE/CAM design methodology is revisited to discern the added value of the newly developed framework and its particularity in assisting aerospace engineering students to meet industrial expectations. A new CAD/CAE/CAM project‐based laboratory framework has been developed integrating TO and LPBF using advanced engineering tools within the aerospace engineering education.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3