Model calibration using hydropedological insights to improve the simulation of internal hydrological processes using SWAT+

Author:

Smit Edward1ORCID,van Zijl George1ORCID,Riddell Edward2ORCID,van Tol Johan3ORCID

Affiliation:

1. Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa

2. Centre for Water Resources Research University of KwaZulu‐Natal Pietermaritzburg South Africa

3. Department of Soil‐ and Crop‐ and Climate Sciences Univeristy of the Free State Bloemfontein South Africa

Abstract

AbstractSoils affect the distribution of hydrological processes by partitioning precipitation into different components of the water balance. Therefore, understanding soil‐water dynamics at a catchment scale remains imperative to future water resource management. In this study, the value of hydropedological insights was examined to calibrate a processes‐based model. Soil morphology was used as soft data to assist in the calibration of the Soil Water Assessment Tool (SWAT+) model at five different catchment scales (48, 56, 174, 674, and 2421 km2) in the Sabie River catchment, South Africa. The aim of this study was to calibrate the SWAT+ model to accurately simulate long‐term monthly streamflow predictions as well as to reflect internal soil hydrological processes using a procedure focusing on hydropedology as a calibration tool in a multigauge system. Results indicated that calibration improved streamflow predictions where R2 improved by 2%–8%. Nash‐Sutcliffe Efficiency (NSE) improved from negative correlations to values exceeding 0.5 at four of the five catchment scales compared to the uncalibrated model. Results confirm that soil mapping units can be calibrated individually within SWAT+ to improve the representation of hydrological processes. Particularly, the spatial linkage between hydropedology and hydrological processes, which is captured within the soil map of the catchment, can be adequately reflected within the model simulations after calibration. This research will lead to an improved understanding of hydropedology as soft data to improve hydrological modelling accuracy.

Funder

Water Research Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3