Study of the synthetic silica functionalization effect on wettability of oxidized polypropylene film by plasma discharge

Author:

Fantatho Felipe1ORCID,Morales Ana Rita1ORCID

Affiliation:

1. School of Chemical Engineering ‐ Department of Materials and Bioprocess Engineering Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz São Paulo Brazil

Abstract

AbstractThis work describes the effect of functionalized silica, treated with organosilane (γ‐methacryloxypropyltrimethoxysilane), on the wettability loss of polypropylene (PP) film when exposed to surface oxidization treatment by atmospheric air plasma. The observed wettability loss results from the spontaneous process within the polymer matrix, which reduces surface energy, causing oxidized polymer molecules to move toward the bulk of the film. The effect of silica's functionalization on the initial wettability of oxidized PP film and its loss on storage time is measured by contact angle. Elemental analysis of the modified silica, employing acid catalytic processes, reveals the highest functionalization yield. Silicon nuclear magnetic resonance shows that the post‐condensation process negatively affects structures formed by the organosilane, eliminating three‐dimensional bonds and reverting it to its original and hydrolyzed state. The solvent extraction process and elemental analysis confirm that the concentration of organosilane in the chemically bonded layer, which was around 9 wt%, is not influenced by the post‐condensation treatment. Notably, silica functionalized with the highest concentration of organosilane has significantly improved initial wettability when oxidative treatment occurs within a shorter residence time (30 s), which achieved a contact angle of 53.8° against 59.1° for the film with untreated silica. However, the wettability loss rate of the materials remains unaffected by the presence of functionalized silica.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3