Effect of core–sheath bi‐polymeric scaffolds fabricated from acid‐soluble collagen and poly(lactic acid) derivatives on wound healing

Author:

Mukta Nasima Akter12,Ahmed Samina3,Sarwaruddin Chowdhury A. M.3,Tareq Shafi M.4,Sajib Abu Ashfaqur5,Bashar M. S.3,Haque Papia2ORCID

Affiliation:

1. Department of Nutrition and Food Engineering Daffodil International University Dhaka Bangladesh

2. Department of Applied Chemistry and Chemical Engineering University of Dhaka Dhaka Bangladesh

3. BCSIR Dhaka Bangladesh

4. Department of Environmental Sciences Jahangirnagar University Dhaka Bangladesh

5. Department of Genetic Engineering and Biotechnology University of Dhaka Dhaka Bangladesh

Abstract

AbstractThe core–sheath bi‐polymeric scaffold has been proven as an encouraging material based on the requirement of scaffolds. This study aims to prepare electrospun core–sheath scaffolds by using acid‐soluble collagen (ASC) as core material and poly(lactic acid) (PLA) or PLA‐g‐VAc as sheath material to get the most in combination from a hydrophilic and a hydrophobic polymer. ASC is extracted from waste Tilapia fish skin conserving the triple helix structure of the α1 (130 kDa) chain, and a α2 (120 kDa) chain cross‐linked with the β (280 kDa) chain confirmed by amino acid profile, sodium dodecyl sulphate‐polyacrylamide gel electrophoresis. PLA‐g‐VAc is prepared by grafting vinyl acetate (VAc) onto the PLA chain using benzoyl peroxide as the initiator. FT‐IR, 1H NMR, and 13C NMR of PLA‐g‐VAc reveal that grafting occurs between the double bond of VAc and the methine group of PLA. The morphology of the scaffolds is determined by the field emission scanning electron microscope. FT‐IR, thermogravimetric analysis, differential scanning calorimetry, XRD, and water contact angle measurements are used for further characterization of scaffolds. In vivo, cytotoxicity analysis on the Vero cell line exposes that scaffolds are biocompatible. Application of scaffolds to the surgically produced wounding of skin in a rat model followed by histological assay indicates the enhanced properties of core–sheath scaffolds rather than the single polymeric scaffolds.

Funder

University Grants Commission of Bangladesh

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3