Development of a concentration‐controlled sequential nanoprecipitation for making lipid nanoparticles with high drug loading

Author:

Xu Letao12,Wang Xing2,Yang Guangze2,Zhao Zihan2,Weng Yilun1ORCID,Li Yang12,Liu Yun2,Zhao Chun‐Xia12ORCID

Affiliation:

1. Australian Institute for Bioengineering and Nanotechnology The University of Queensland St. Lucia Queensland Australia

2. School of Chemical Engineering Faculty of Sciences Engineering and Technology The University of Adelaide Adelaide South Australia Australia

Abstract

AbstractLipid‐based nanostructures have garnered considerable interests over the last two decades, and have achieved tremendous clinical success including the first clinical approval of a liposome (Doxil) for cancer therapy in 1995 and the recent COVID‐19 mRNA lipid nanoparticle vaccines. Compared to liposomes which have a lipid bilayer surrounding an aqueous core, lipid nanoparticles with a particle structure have several attractive advantages for encapsulating poorly water‐soluble drugs such as better stability due to the particle structure, high drug encapsulation efficiency because of a pre‐ or co‐drug‐loading strategy. While many studies have reported the synthesis of lipid nanoparticles for hydrophobic drug encapsulation, the precise control of drug loading and encapsulation efficiency remains a significant challenge. This work reports a new concentration‐controlled nanoprecipitation platform technology for fabricating lipid nanoparticles with tunable drug loading up to 70 wt%. This method is applicable for encapsulating a wide range of drugs from very hydrophobic to slightly hydrophilic. Using this facile method, nanoparticles with tunable drug loading exhibited excellent properties such as small particle size, narrow size distribution, good particle stability, showing great promise for future drug delivery applications.

Publisher

Wiley

Subject

General Medicine,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3