Drivers of desert plant beta diversity on the Qinghai–Tibet plateau

Author:

Wen Lu12ORCID,Zhao Kexuan1,Sun Haoyu1,Feng Gang1ORCID,Sun Qiang1,Liang Cunzhu1,Li Zhiyong1,Wang Lixin1,Svenning Jens‐Christian2ORCID

Affiliation:

1. Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolia Plateau, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment Inner Mongolia University Hohhot China

2. Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology Aarhus University Aarhus C Denmark

Abstract

AbstractThe desert ecosystem of the Qinghai–Tibet Plateau (QTP) is an important component of China's desert ecosystem. Studying the mechanisms shaping the taxonomic, phylogenetic, and functional beta diversity of plant communities in the QTP desert will help us to promote scientific conservation and management of the region's biodiversity. This study investigated the effects of environmental (including altitude, climate factors, and soil factors) and geographic distances on three facets of beta diversity as well as their turnover and nestedness components based on field survey data. The results showed that turnover components dominate the three facets of beta diversity. However, the turnover contributions to phylogenetic and functional beta diversity were lower than for taxonomic beta diversity. Environmental distance had a greater influence than geographic distance, with the former uniquely explaining 15.2%–22.8% of beta diversity and the latter explaining only 1.7%–2.4%. Additionally, the explanatory power of different factors for beta diversity differed between herbs and shrubs, with environmental distance being more important for the latter. Distance‐based redundancy analysis suggested that soil total potassium content had a substantial impact on the beta diversity of three dimensions, with mean temperature of the coldest month and soil total phosphorus content having a substantial impact on taxonomic and functional beta diversity as well. Our results support that environmental sorting plays a predominant role in shaping plant community composition across QTP desert ecosystems. To maintain the plant diversity of this region, it is crucial to prioritize the conservation of its diverse environmental conditions and actively mitigate its degradation by anthropogenic pressures.

Funder

National Natural Science Foundation of China

Danmarks Grundforskningsfond

Villum Fonden

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3