Habitat selection and refuge‐use by a color polymorphic salamander reveal behavioral niche differences

Author:

Straub Cory S.1ORCID,Cuomo Rosella G.1,Jimenez Gabriel1

Affiliation:

1. Department of Biology Ursinus College Collegeville Pennsylvania USA

Abstract

AbstractColor polymorphic species provide an excellent opportunity to investigate the ecology and evolution of intraspecific niche differences. The red‐backed salamander, Plethodon cinereus, is a fully terrestrial lungless salamander with two common color forms, striped and unstriped. Previous research suggests the morphs may be differentially adapted to surface and subsurface microhabitats, with the unstriped morph being more fossorial. This hypothesis predicts that the unstriped morph should be more sensitive to the risks of surface activity (e.g., thermal stress, dehydration, predation), and therefore be more selective than striped morphs when choosing soil surface microhabitats. To test this hypothesis, we experimentally manipulated leaf litter mass in small forest patches (~0.45 m2). Leaf litter addition reduced soil temperatures, buffered against changes in air temperature, and likely provided physical protection from predators. Over 3 years, we found that unstriped adults responded positively to leaf litter addition, but striped adults did not. In addition, unstriped morphs spent significantly more time in protective refuges (opaque, moistened tubes) than striped morphs in laboratory assays. Taken together, the field and laboratory results support the hypothesis that the unstriped morph is more sensitive to the risks of surface activity, and therefore is more likely to be fossorial. This difference in microhabitat use, combined with spatiotemporal variation in leaf litter accumulation on the forest floor, may play an important role in the maintenance of the polymorphism.

Publisher

Wiley

Reference63 articles.

1. Eastern red‐backed salamander (Plethodon cinereus);Anthony C. D.;Amphibians of Ohio,2013

2. The Evolution of Color Polymorphism: Crypticity, Searching Images, and Apostatic Selection

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3