Modeling Writing Traits in a Formative Essay Corpus

Author:

Deane Paul1,Yan Duanli1,Castellano Katherine1,Attali Yigal1,Lamar Michelle1,Zhang Mo1,Blood Ian1,Bruno James V.1,Li Chen1,Cui Wenju1,Ruan Chunyi1,Appel Colleen1,James Kofi1,Long Rodolfo1,Qureshi Farah1

Affiliation:

1. ETS Princeton NJ

Abstract

This paper presents a multidimensional model of variation in writing quality, register, and genre in student essays, trained and tested via confirmatory factor analysis of 1.37 million essay submissions to ETS' digital writing service, Criterion®. The model was also validated with several other corpora, which indicated that it provides a reasonable fit for essay data from 4th grade to college. It includes an analysis of the test‐retest reliability of each trait, longitudinal trends by trait, both within the school year and from 4th to 12th grades, and analysis of genre differences by trait, using prompts from the Criterion topic library aligned with the major modes of writing (exposition, argumentation, narrative, description, process, comparison and contrast, and cause and effect). It demonstrates that many of the traits are about as reliable as overall e‐rater® scores, that the trait model can be used to build models somewhat more closely aligned with human scores than standard e‐rater models, and that there are large, significant trait differences by genre, consistent with genre differences in trait patterns described in the larger literature. Some of the traits demonstrated clear trends between successive revisions. Students using Criterion appear to have consistently improved grammar, usage, and spelling after getting Criterion feedback and to have marginally improved essay organization. Many of the traits also demonstrated clear grade level trends. These features indicate that the trait model could be used to support more detailed scoring and reporting for writing assessments and learning tools.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3