Differentiation-Related Response to DNA Breaks in Human Mesenchymal Stem Cells

Author:

Oliver Lisa123,Hue Erika12,Séry Quentin124,Lafargue Audrey12,Pecqueur Claire12,Paris François124,Vallette François M.124

Affiliation:

1. CRCNA—INSERM UMR 892—CNRS UMR 6299, Nantes, France

2. Faculté de Médecine, Université de Nantes, Nantes, France

3. Centre Hospitalier-Universitaire (CHU) de Nantes, Nantes, France

4. Institut de Cancérologie de l'Ouest—René Gauducheau, St. Herblain, Nantes, France

Abstract

Abstract We have recently shown that the in vitro differentiation of human mesenchymal stem cells (hMSCs) was accompanied by an increased sensitivity toward apoptosis; however, the mechanism responsible for this shift is not known. Here, we show that the repair of DNA double-strand breaks (DSBs) was more rapid in undifferentiated hMSCs than in differentiated osteoblasts by quantification of the disappearance of γ-H2AX foci in the nuclei after γ-irradiation-induced DNA damage. In addition, there was a marked and prolonged increase in the level of nuclear Ku70 and an increased phosphorylation of DNA-PKcs. This was accompanied by an augmentation in the phosphorylation of ATM in hMSCs post-irradiation suggesting the nonhomologous end joining repair mechanism. However, when hMSCs were induced to differentiate along the osteogenic or adipogenic pathways; irradiation of these cells caused an expeditious and robust cell death, which was primarily apoptotic. This was in sharp contrast to undifferentiated hMSCs, which were highly resistant to irradiation and/or temozolomide-induced DSBs. In addition, we observed a 95% recovery from DSB in these cells. Our results suggest that apoptosis and DNA repair are major safeguard mechanisms in the control of hMSCs differentiation after DNA damage.

Funder

Equipe Labelisée la Ligue Contre le Cancer

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3