Affiliation:
1. Faculty of Data Science in Business Ho Chi Minh University of Banking Ho Chi Minh City Vietnam
Abstract
This article is devoted to solving a backward problem for general nonlinear parabolic equations in Sobolev spaces. The problem is hardly solved by computation since it is severely ill‐posed in Hadamard's sense. Using the Fourier transform and the truncation of high‐frequency components, we construct a regularized solution for the problem from the data given inexactly. As usual for ill‐posed problems, the rate of convergence can be obtained under additional smoothness assumptions on the regularity of the exact solution, the so‐called source conditions. By using a source condition in a generalized form, we prove a convergence estimate in a Sobolev space
. Corresponding to different levels of the source condition, the convergence rates are improved gradually. We apply our theory to the backward problem with a convection–diffusion operator and a cubic nonlinearity. Finally, the numerical results are presented to test the validity of the proposed regularization method.
Funder
National Foundation for Science and Technology Development