Affiliation:
1. Institute of Organic Chemistry Clausthal University of Technology Leibnizstraße 6 38678 Clausthal-Zellerfeld Germany
2. Institute of Chemical and Electrochemical Process Engineering Clausthal University of Technology Leibnizstraße 17 38678 Clausthal-Zellerfeld Germany
3. Research Center for Energy Storage Technologies Clausthal University of Technology Am Stollen 19A 38640 Goslar Germany
Abstract
Herein, a new semi‐organic aqueous flow battery based on a hydroxylated tetracationic viologen, 1,1′‐bis(3‐((2‐hydroxyethyl)dimethylammonio)propyl)‐[4,4′‐bipyridine]‐1,1′‐diium tetrachloride ([(DMAE‐Pr)2‐Vi]Cl4), and the ferrocene derivative, (ferrocenylmethyl)trimethylammonium chloride (FcNCl), is demonstrated. Efficiency, accessible capacity, and capacity retention of the battery are investigated at two concentrations of the active redox species: 0.1 and 0.5 mol dm−3 in 1 mol dm−3 KCl near‐neutral electrolytes. The implementation of the ferrocene‐derivative posolyte decreases the capacity fade rate by a factor of ≈4 with respect to previous work using 4‐hydroxy‐2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPOL) as posolyte. Capacity loss is driven by crossover of the positive redox couple into the negolyte, in particular at high concentrations, indicating the need for more selective membranes and less permeable ferrocene derivatives. Discussions are supported by conductivity measurements, cell resistance, and postmortem analysis of the electrolytes using cyclic voltammetry and nuclear magnetic resonance (NMR) spectroscopy. The characterization of [(DMAE‐Pr)2‐Vi]Cl4 is expanded as a high‐energy negolyte and future scaleup requirements for aqueous organic flow batteries are informed.
Funder
Alexander von Humboldt-Stiftung
Subject
Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献