Affiliation:
1. SENSOR Lab, Department of Information Engineering University of Brescia Via Valotti 9 25133 Brescia Italy
2. Laboratory of Atomic Structures and Defects in Advanced Materials National Institute of Materials Physics Atomistilor str. 405 A R-077125 Bucharest-Magurele Romania
3. Faculty of Physics University of Bucharest Atomistilor 405 077125 Magurele Romania
Abstract
This study presents conductometric sensors based on Co3O4 nanowires for hydrogen detection at ppb levels. The nanowires are synthesized through thermal oxidation of a 50 nm cobalt layer, exhibiting diameters between 6–50 nm and lengths of 1–5 μm, primarily growing along the (311) direction of spinal Co3O4. Raman investigation reveals five characteristic peaks at 195, 482, 521, 620, and 692 cm−1, corresponding to symmetric phonon modes of crystalline Co3O4. Electron paramagnetic resonance measurements confirm the presence of a ferromagnetic phase, attributed to incomplete cobalt oxidation, which disappears after 8 h of thermal aging at 400 °C. Conductometry measurements are performed in the temperature range of 300–500 °C. At temperatures above 300 °C, sensors exhibit abnormal n‐type semiconducting behavior due to lattice oxygen's involvement in the hydrogen sensing mechanism. Operating at 450 °C in dry air, the sensor shows a higher 232% response to 100 ppm H2 compared to ethanol, acetone, methane, carbon monoxide, and nitrogen dioxide. Remarkably, the sensor maintains a consistent conductance baseline even under high humidity (90%) for 25 d, with three‐cycle repeatability. This distinctive gas‐sensing capability is attributed to the catalytic activity and elevated operating temperature.
Subject
Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献